Composite material pedestrian bridge for the Port of Bilbao

IOP Conf. Series: Materials Science and Engineering 40 (2012) 012040.

I. Gorrochategui, C. Manteca, A. Yedra, R. Miguel and F. J. del Valle

Abstract:

Composite materials in comparison to traditional ones, steel and concrete, present advantages in civil works construction: lower weight, higher corrosion resistance (especially in the marine environment), and ease of installation. On the other hand, fabrication costs are generally higher. This is the reason why this technology is not widely used. This work illustrates the process followed for the design, fabrication and installation of a composite material pedestrian bridge in the Port of Bilbao (Northern Spain). In order to reduce the price of the bridge, the use of low cost materials was considered, therefore polyester resin was selected as the polymeric matrix, and glass fibres as reinforcement.

Two material choices were studied. Currently in the market there is high availability of carbon nanoparticles: carbon nanotubes (CNT) and carbon nanofibres (CNF), so it was decided to add this kind of nanoparticles to the reference material with the objective of improving its mechanical properties. The main challenge was to transfer the CNT and CNF excellent properties to the polymeric matrix. This requires dispersing the nanoreinforcements as individual particles in the polymeric matrix to avoid agglomerates. For this reason, an advanced high shear forces dispersion technique (called “three roll mills”) was studied and implemented. Also surface functionalization of the nanoreinforcements by chemical treatment was carried out. Herein, a comparison is performed between both materials studied, the explanation of the employment of the reference material (without nanoreinforcement) as the one used in the fabrication of the pedestrian bridge is justified and, finally, the main characteristics of the final design of the structural element are described.

Leave a Reply